Intended Subtask Solution for Favorite Colors

For the Favorite Colors problem on the 2020 US Open Gold (Problem link), what is the intended solution for the first subtask (N, M <= 10^3). I know the full solution is some type of a DSU, but is the partial solution also DSU?

Probably the solution except not merging small to large. @Benq?

Sure, you can use DSU for the subtask.

My solution for the subtask
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
typedef long double ld;
typedef double db; 
typedef string str; 
 
typedef pair<int,int> pi;
typedef pair<ll,ll> pl; 
typedef pair<db,db> pd; 
 
typedef vector<int> vi; 
typedef vector<ll> vl; 
typedef vector<db> vd; 
typedef vector<str> vs; 
typedef vector<pi> vpi;
typedef vector<pl> vpl; 
typedef vector<pd> vpd; 
 
#define mp make_pair 
#define f first
#define s second
#define sz(x) (int)x.size()
#define all(x) begin(x), end(x)
#define rall(x) (x).rbegin(), (x).rend() 
#define rsz resize
#define ins insert 
#define ft front() 
#define bk back()
#define pf push_front 
#define pb push_back
#define eb emplace_back 
#define lb lower_bound 
#define ub upper_bound 
 
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define trav(a,x) for (auto& a: x)
 
const int MOD = 1e9+7; // 998244353;
const int MX = 2e5+5; 
const ll INF = 1e18; 
const ld PI = acos((ld)-1);
const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; 
 
template<class T> bool ckmin(T& a, const T& b) { 
	return b < a ? a = b, 1 : 0; }
template<class T> bool ckmax(T& a, const T& b) { 
	return a < b ? a = b, 1 : 0; } 
int pct(int x) { return __builtin_popcount(x); } 
int bit(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) 
int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 
 
// INPUT
template<class A> void re(complex<A>& c);
template<class A, class B> void re(pair<A,B>& p);
template<class A> void re(vector<A>& v);
template<class A, size_t SZ> void re(array<A,SZ>& a);
 
template<class T> void re(T& x) { cin >> x; }
void re(db& d) { str t; re(t); d = stod(t); }
void re(ld& d) { str t; re(t); d = stold(t); }
template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); }
 
template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; }
template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); }
template<class A> void re(vector<A>& x) { trav(a,x) re(a); }
template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); }
 
// TO_STRING
#define ts to_string
template<class A, class B> str ts(pair<A,B> p);
template<class A> str ts(complex<A> c) { return ts(mp(c.real(),c.imag())); }
str ts(bool b) { return b ? "true" : "false"; }
str ts(char c) { str s = ""; s += c; return s; }
str ts(str s) { return s; }
str ts(const char* s) { return (str)s; }
str ts(vector<bool> v) { 
	bool fst = 1; str res = "{";
	F0R(i,sz(v)) {
		if (!fst) res += ", ";
		fst = 0; res += ts(v[i]);
	}
	res += "}"; return res;
}
template<size_t SZ> str ts(bitset<SZ> b) {
	str res = ""; F0R(i,SZ) res += char('0'+b[i]);
	return res; }
template<class T> str ts(T v) {
	bool fst = 1; str res = "{";
	for (const auto& x: v) {
		if (!fst) res += ", ";
		fst = 0; res += ts(x);
	}
	res += "}"; return res;
}
template<class A, class B> str ts(pair<A,B> p) {
	return "("+ts(p.f)+", "+ts(p.s)+")"; }
 
// OUTPUT
template<class A> void pr(A x) { cout << ts(x); }
template<class H, class... T> void pr(const H& h, const T&... t) { 
	pr(h); pr(t...); }
void ps() { pr("\n"); } // print w/ spaces
template<class H, class... T> void ps(const H& h, const T&... t) { 
	pr(h); if (sizeof...(t)) pr(" "); ps(t...); }
 
// DEBUG
void DBG() { cerr << "]" << endl; }
template<class H, class... T> void DBG(H h, T... t) {
	cerr << to_string(h); if (sizeof...(t)) cerr << ", ";
	DBG(t...); }
#ifdef LOCAL // compile with -DLOCAL
#define dbg(...) cerr << "[" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__)
#else
#define dbg(...) 42
#endif
 
// FILE I/O
void setIn(string s) { freopen(s.c_str(),"r",stdin); }
void setOut(string s) { freopen(s.c_str(),"w",stdout); }
void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); }
void setIO(string s = "") {
	unsyncIO();
	// cin.exceptions(cin.failbit); 
	// throws exception when do smth illegal
	// ex. try to read letter into int
	if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO
}
 
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 
 
/**
 * Description: Disjoint Set Union with path compression. 
 	* Add edges and test connectivity. Use for Kruskal's 
 	* minimum spanning tree.
 * Time: O(\alpha(N))
 * Source: CSAcademy, KACTL
 * Verification: USACO superbull
 */
 
struct DSU {
	vi e; void init(int n) { e = vi(n,-1); }
	int get(int x) { return e[x] < 0 ? x : e[x] = get(e[x]); } 
	bool sameSet(int a, int b) { return get(a) == get(b); }
	int size(int x) { return -e[get(x)]; }
	bool unite(int x, int y) { // union-by-rank
		x = get(x), y = get(y); if (x == y) return 0;
		if (e[x] > e[y]) swap(x,y);
		e[x] += e[y]; e[y] = x; return 1;
	}
};
 
/**template<class T> T kruskal(int n, vector<pair<T,pi>> ed) {
	sort(all(ed));
	T ans = 0; DSU D; D.init(n+1); // edges that unite are in MST
	trav(a,ed) if (D.unite(a.s.f,a.s.s)) ans += a.f; 
	return ans;
}*/
 
 
DSU D;
int N,M,co,cnt[MX];
vi adj[MX];
 
int main() {
	setIO(); re(N,M); D.init(N+1);
	vpi ed;
	F0R(i,M) {
		int a,b; re(a,b);
		ed.pb({a,b});
	}
	int lst = MOD;
	while (1) {
		int co = 0; FOR(i,1,N+1) co += D.get(i) == i;
		if (lst == co) break;
		lst = co;
		FOR(i,1,N+1) adj[i].clear();
		trav(t,ed) adj[D.get(t.f)].pb(D.get(t.s));
		FOR(i,1,N+1) FOR(j,1,sz(adj[i])) D.unite(adj[i][0],adj[i][j]);
	}
	FOR(i,1,N+1) {
		if (!cnt[D.get(i)]) cnt[D.get(i)] = ++co;
		ps(cnt[D.get(i)]);
	}
	// you should actually read the stuff at the bottom
}
 
/* stuff you should look for
	* int overflow, array bounds
	* special cases (n=1?)
	* do smth instead of nothing and stay organized
	* WRITE STUFF DOWN
*/

Is merging small to large a DSU optimization, or is it a completely different concept?